Optimal Control and Variational Methods Lecture Notes Prof . Dan Cobb
نویسنده
چکیده
2 Finite-Dimensional Optimization 5 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Unconstrained Optimization in R . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 Critical Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.4 Hessians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.5 Definite Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.6 Continuity and Continuous Differentiability . . . . . . . . . . . . . . . . . . 14 2.2.7 Second Derivative Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Constrained Optimization in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Constrained Extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.3 Strict Inequality Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.4 Equality Constraints and Lagrange Multipliers . . . . . . . . . . . . . . . . . 19 2.3.5 Second Derivative Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.6 Non-Strict Inequality Constraints . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.7 Mixed Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
منابع مشابه
Optional Lecture 3 : Interior Point Method
This file of notes serves as a reference for Zeyuan himself about the materials to be delivered in class. It copies a lot of materials from Prof Michel X. Goemans’ lecture notes on 6.854 in 1994, (see http: //www-math.mit.edu/~goemans/notes-lp.ps), and Prof Sven O. Krumke’s report on interior point methods (see http://optimierung.mathematik.uni-kl.de/~krumke/Notes/interior-lecture. pdf). Ye’s i...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملFactors affecting students tendency of Univercity students to Lecture Notes
Introduction: Many studies detected factors contributing to the students’ tendency to lecture notes. This study aimed at evaluating the factors affecting students tendency to lecture notes in Hormozgan University of Medical Sciences. Methods: In this descriptive study, 179 students from medicine, nursing & midwifery, health, and Paramedicine schools were selected through stratified random...
متن کاملOptimal Control Methods and the Variational Approach to Differential Equations
The calculus of variations is an important tool in the study of boundary value problems for differential systems. A development of this approach, called the control variational method, is based on the use of the optimal control theory, especially of the Pontryagin maximum principle. In this presentation, we review the results established in the literature on the control variational method and i...
متن کاملLinear Programming Notes
These notes summarize the central definitions and results of the theory of linear programming, as taught by David Williamson in ORIE 6300 at Cornell University in the fall of 2014. Proofs and discussion are mostly omitted. These notes also draw on Convex Optimization by Stephen Boyd and Lieven Vandenberghe, and on Stephen Boyd’s notes on ellipsoid methods. Prof. Williamson’s full lecture notes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013